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Abstract : A novel non-biomimetic synthesis of horsfiline has been developed. The key pyrrolidine 
forming reaction is the 1,3-dipolar cycloaddition of the thermally generated N-methylazomethine 
ylide to a suitable 3-alkylidene-indolin-2(3H)one. The same strategy was also applied to the synthesis 
of pure (R)-(-)-enantiomer. 

The roots ofHorsfieldia superba native to Malaysia are a rich source ofindole-based alkaloids and, among 

them, (R)-(-)-horsfiline 1 is one of the simplest prototype members of the oxindole subfamily. 1 Several routes to 
both racemic and enantioenriched I have been devised. 2 More generally, most of the previous syntheses of 

oxindole alkaloids are related to an anionic route, aryl radical cyclization, intramolecular Heck reaction and 
oxidative rearrangement of indole precursors according to a biogenetically patterned approach) Herein, we 
wish to report a novel non-biogenetic entry to 1 based on a thermal intermolecular 1,3-dipolar cycloaddition. 4 
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As outlined antithetically in Scheme 1, the pyrrolidine subunit in the target molecule arose from the two 
fragments 2 [5-methoxy-3-methylene-indolin-2(3H)one] and N-methyl-azomethine ylide 3 ( thermally generated 

in situ from sarcosine and formaldehyde), s Furthermore, a suitable enantiomerically pure dipolarophile B (FG: 

chiral auxiliary) was planned to give access to natural (-)-horsfiline, when stereospecific cycloaddition was 
expected to induce the requisite R-stereochemistry. Previous studies have shown that, in principle, 3-alkylidene- 
indolin-2(3H)ones are readily available by condensation of the corresponding oxindoles with carbonyl 

compounds. 6 Unfortunately, the ephemeral nature of 2 7 haS made it difficult to obtain and a proclivity toward 

dimerization compromised its utility as a dipolarophile, s On the other hand, non-stabilized ylides (as 3) are 
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known to react most efficiently with electron-deficient dienophiles since such a pair of addends possesses a 
narrow dipole HOMO (-7.91 eV for 3)/dipolarophile LUMO gap 9 (Sustmarm's Type I classification)~°; i. e., the 

placement of  an EWG on the ~-bond lowers the dipolarophile LUMO energy. Accordingly, three candidates 4, 5 
and 6, that differ from 2 by the presence of a sacrificial ~ EWG, were considered with the hope of i) obviating 
the intrinsic lability of the dipolarophile and ii) eventually, opening a route to non-racemic 1. The designed 
starting materials were prepared from the easily accessible 5-methoxyisatin 712 in satisfactory yields (Scheme 2). 
We first elected (E)-nitroalkene 4 to serve as a dipolarophile, mainly because of its known reactivity in 
cycloaddition reactions ~3 and the possibility of subsequently removing the nitro group (e.g., Bu3SnH, AIBN).~4 
This initial approach had to be abandoned due to the instability of 4 under the conditions designed for thermal 
generation of 3 according to the Tsuge protocol. 5 We found that treatment of vinylsulfone 5 (as a E/Z mixture) 
(Scheme 2) with sarcosine (2.5 equiv) and paraformaldehyde (6 equiv) in refluxing toluene (Dean-Stark) for 7 
h, resulted in the clean formation of a mixture of (3R*,4'S*)-8 and (3R*,4'R*)-9 in 60% combined yield. Since 
the sulfone group in 8 and 9 is excised in the subsequent step, separation of 8 and 9 was not routinely performed. 
We were disappointed to find that reductive cleavage with either 6% Na(Hg) in MeOH in the presence of 
Na2HPO415 or powdered Mg/HgClz(cat) 16 in MeOH led to intractable product mixtures. 
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Scheme 2 

Reagents and conditions, a) MeNO~, EtOH, DBU, rt (66%); b) MsCI, TEA, CH2C12, 0°C, (89%); c) N2I-I4, EtOH, rfx (81%); 
d) HCOOEt, EtONa, Et20, rt, then AcOH (79%); e) TolSO2Na, n-Bu4NBr (cat), CH2CI:-TFA (cat), rt (63°/0);t ") Ph3P=CHCOOBn, 
diglyme, rfx (---)6; 85%);g) (CH20)n, 3, 3A, PhMe (Dean-Stark), rfx (77%), h) 10% Pd/C, H2 (304kPa), MeOH, rt (95%), i) 2- 
MercaptoPy-N-Ox, DCC, DMAP, CH2C12, dark; j) 3-Hydroxy-4-methylthiazole-2-(3H)thione, DCC, 2-PyrrolidinoPy, CH2C12, dark; 
k) Bu3SnH, AIBN, C6H6, rfx [65% (via i), 74% (via J)l. 

We turned our attention to the alternate candidate 6.17'18 Despite the less favourable electronic 
arrangement of 6 vs 4 and 5, we found that by refluxing a mixture of 6 with sarcosine and (CH20)n in toluene 
for 4 h under the same conditions as for 5, a clean and stereospecifie cyeloaddition took place delivering pure 
(3R*, 4'S*)-10 (54%). Interestingly, addition o f  powdered, oven-dried 3-A molecular sieves w to the reaction 

medium accelerates the cycloaddition reaction [about 2 h for disappearance (TLC) of 6 ] improving the 

chemicalyield (77%)) 0 With the crucial assembly of the pyrrolidine subunit accomplished, the stage was set for 
decarboxylative elimination to provide rac-l. Hydrogenolysis of 10 [10%Pd/C, MeOH, 1-12 (304 kPa), rt] gave 
the aminoacid 11, which was immediately converted to either N-hydroxy-2-thiopyridine ester zl (DCC, DMAP, 2- 
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mercapto-pyfidine N-oxide, CH2C12, dark) or the N-hydroxy-2-thiazolinethione ester 22 ( DCC, 4- 
pyrrolidinopyridine, 3-hydroxy-4-methylthiazole-2(3H)thione, CH2C12, dark). Treatment of  the respective esters 
with Bu~SnH in the presence of  a catalytic amount of  AIBN in refluxing benzene for 2 h 23 afforded rac-1 in 38 

% and 41% overall yields (from 10), respectively. Toward the goal of  accessing (-)-!,  we reasoned that 1,3- 

dipolar cycloaddition involving (5R)-menthyl ester 12 as an enantiomerically pure dipolarophile would proceed 

with 7r-facial diastereoselectivity. The requisite 12 was prepared in 76% yield by Wittig homologation of  7 with 
(5R)-menthyl (triphenylphosphoranylidene)acetate in refluxing diglyme. In fact, repetition of  our protocol with 
1224produced two chromatographically separable oxindoles identified as (-)-(3S,4'R)-1325(39 %) and (-)- 

(3R,4'S)-1425(41%). The 400-MHz 1H NMR spectra of 13 and 14 were fully assigned with the aid of COSY, 
NOESY and HMBC results. More specifically, the 'wrong' diastereomer 13 was identified on the basis of  i) 

strong shielding of  one of  H-6"(menthol moiety) (8 : -0.089 ppm) resulting from the low-energy conformation 

in which it is located above the center of  the benzene ring, and ii) cross-peaks (NOESY) of  H-6" with the 
aromatic protons H-4/H-6. In 14 the presence of  NOESY correlations between Me-C(8")(menthol subunit) and 
H-4/H-6 supports that the major population conformer is with the i-propyl appendage and benzene ring 

overlaid. The preference of 13 and 14 for these conformations has been conclusively demonstrated using 
molecular mechanics calculations. 
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Correlation to natural horsfiline (-)-1 provided proof of  the R configuration at C-3 of  the more polar 

diastereomer 14. This was accomplished, after much experimentation, in 65% overall yield by cleavage of  the 
chiral auxiliary [powdered KOH, 18-crown-6(cat), THF, rt, 18 h; then Dowex 50Wx8] and subsequent removal 
of  the CO2H function according to the Barton radical protocol. 21 The synthetic material was compared with an 
authentic sample of  (-)-horsfiline, kindly provided by Dr. Borschberg (ETH, Ziarich), and was found to be 

identical by ~H NMR and CD spectra. The reported specific rotation for the natural product is [C~]D -7.2 (C 1, 

MeOH),  i that found for our material is bX]D -7.0 (c 0.55, MeOH). In conclusion, the use of  azomethine ylides 

with 3-alkylidene-indolin-2(3H)-ones as dipolarophiles provides a rapid assembly of the pyrrolidine subunit in 
oxindole alkaloids. Although the diastereoselection was disappointingly low, the high yields, coupled with the 
simple chromatographic separation of  the more polar diastereomer, provided the natural enantiomer (-)-1 in 
good optical purity. The above chiral auxiliary strategy 26 should be readily adapted to prepare other oxindoles 
and ways to maximize stereocontrol are presently being explored. 
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